Details of potMax Analysis

Adam L. Pintar Dat Duthinh Emil Simiu

1 Introduction

The package potMax provides an estimation procedure for the distribution of
the peak (maximum) value of a stationary, but otherwise fairly general, time
series. It may also be used to calculate return values. The model that forms the
basis of the procedure is a two dimensional Poisson process that is appropriate,
in an asymptotic sense, for modeling the extremes of a random process. One
dimension of the Poisson process is time since the target data sets are time
series. An example of the second dimension is the pressure exerted by wind on
a scale model of a building in a wind tunnel. The motivation for this R package
are such time series, and the all sets provided with the package are examples of
wind tunnel data. This vignette has three goals:

1. Describe the Poisson process to be used, including justification for its
application to general random processes.

2. Provide the basic steps for estimation and uncertainty quantification in
general terms, i.e., not specific to R [R, 2018] or this package, potMax.

3. Show how the package potMax may be used to carry out those steps.

2 Poisson Process

Poisson processes are defined by their intensity function. The two intensity
functions used here are given in Equations 1 and 2.
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Notice that the left side of Equations 1 and 2 are functions of ¢ (time) and y
(e.g., pressure). However, the right side of Equations 1 and 2 are only functions
of y. The implication is that only stationary time series, those not changing
behavior over time, are considered. The + subscript in Equation 1 means that
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Figure 1: Raw time series (top), observations above 1.8 (middle), and observa-
tions above 2 (bottom).

negative values inside the square brackets are raised to zero. Equation 2 is the
limit of Equation 1 as k approaches zero. For that reason, the Poisson process
defined by the intensity function in Equation 2 is referred to as the Gumbel
model henceforth. The two dimensional Poisson processes defined by Equations
1 and 2 are appropriate models for crossings of a high threshold. Consider
Figure 1, which depicts a raw time series and two different thresholded versions.
Notice in Figure 1 the "silos” of thresholded crossings. This occurs because the
observations comprising the raw time series are autocorrelated. Figure 2 depicts
an estimate of the autocorrelation function (ACF) for the series shown in the
top plot of Figure 1. Observations separated by more than 40 increments of time
(in this case almost one tenth of a second) remain highly positively correlated.

Poisson process are not appropriate for such data without further processing
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Figure 2: Estimated autocorrelation function for the time series in the top plot
of Figure 1.



because one of their defining assumptions is independence. I am deliberately be-
ing vague because a careful treatment of Poisson processes is out of the scope of
this vignette. So that the Poisson process model is tenable, the time series must
be declustered before thresholding. Declustering proceeds by forming clusters
and discarding all but the cluster maximums. Clusters are formed by groups of
sequential observations falling above the series mean value. All observations be-
low the series mean are ignored since the focus is on estimating the distribution
of the peak value. Figure 3 displays the analog of Figure 1 after declustering,
and Figure 4 depicts the estimated autocorrelation function of the series in the
top plot of Figure 3. Figure 4 shows that the declustering is very effective for
removing the autocorrelation. After removing the autocorrelation in the series,
or declustering, the use of the Poisson processes defined by the intensity func-
tions in Equations 1 and 2 as models for crossings of a high threshold is justified.
They are used for such purposes in many papers, e.g., [Smith, 1989, Smith, 2004,
Coles, 2004, Pintar et al., 2015, Duthinh et al., 2017]. The original theoretical
justification is provided by [Pickands, 1971].

2.1 Threshold Choice

The intensity functions 1 and 2 are considered over the domain D = (0, 00) X
(b,00), where b is a chosen threshold. A hurdle to the use of these models
is the appropriate choice of b. Since the threshold dictates the data that are
included in (or omitted from) fitting the model, its impact on the results can
be large. Theory commands [Pickands, 1971] that the model becomes more
appropriate as the threshold increases. However, since observations are taken
over a finite period of time, the threshold cannot be chosen too high because too
few observations will remain for fitting the model. Any approach to choosing
a threshold must balance these competing aspects. A common and easy to
implement approach is to pick a high quantile of the series, e.g., 95% (see page
489 of [Mannshardt et al., 2010]). This R package considers two alternatives.

2.1.1 Optimal Threshold

An optimal threshold based on the fit of the model to the data is the first alter-
native. The fit of the model is judged by the W-statistics defined in Equation
(1.30) of [Smith, 2004]. Figure 5 shows a plot of W-statistics versus quantiles of
the standard exponential distribution using the optimal threshold for the series
in the top plot of Figure 3. If the data fit perfectly to the model, the points
would fall exactly on the diagonal line. The threshold is chosen by creating
such a plot for a sequence of potential thresholds and selecting the one that
minimizes the maximum absolute vertical distance to the diagonal line. This
approach is used in [Duthinh et al., 2017].
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Figure 3: Raw time series (top), observations above 1.8 after declustering (mid-
dle), and observations above 2 after declustering (bottom).
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Figure 4: Estimated autocorrelation function for the time series in the top plot
of Figure 1 after declustering it.
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Figure 5: Plot of the W-statistics versus their corresponding standard exponen-
tial quantiles for the declustered series depicted in the top plot of 3 using the
optimal threshold.



2.1.2 Many Thresholds

The second alternative is to combine results for many thresholds by weighted
averaging. The key step then is constructing the weights, for which the W-
statistics may again be leveraged. Let J; be the maximum absolute vertical
distance in a plot of the W-statistics against the standard exponential quantiles,
normalized to the unit interval for the threshold b;. A natural transformation
of the §; is

_exp{—7d;}
Wi = > jexp{—7d;} (3)

With 7 = 0, each threshold recieves equal weight, and as 7 approaches oo, the
weight corresponding to the smallest §; approaches unity while the rest approach
zero. A reasonable setting seems to be 7 = 5 [Pintar and Duthinh, in prep].

2.2 Estimation

The model parameters, n=(u, o, k) for the intensity function in Equation 1, and
n=(u, o) for the intensity function in Equation 2 are estimated by maximum
likelihood. Let (y;,t;) be the declustered values that lie above the threshold b.
The likelihood is then given by Equation 4.

L(n) = (lj A(ti,yi)> ~exp{—/pk(t>y)dtdy} (4)

The domain of integration, D, in Equation 4 is the unbounded rectangle [0, 7] x
[b, 00), where T is the time of the last observation.

3 Estimating the Distribution of the Peak

The goal of this section is to describe the algorithm for estimating the distribu-
tion of the peak in general statistical terms, i.e., without reference to R or the
potMax package. It is expressed as four steps, most with substeps of their own.

1. Decluster the series.
2. Select the threshold or thresholds

(a) Construct a set of potential thresholds. This may be done by specify-
ing a minimum and maximum number of observations and identifying
their respective thresholds, say b; and bg. Then, the thresholds are
by > by > --- > bp_1 > bp such that if b; corresponds to n; obser-
vations, bj1 corresponds to n; + 1 observations (assuming no ties).

(b) For each potential threshold, fit the model via maximum likelihood
as described in Section 2.2.

(¢) Create a W-plot for each fit, as described in Section 2.1.1.



(d) Summarize each W-plot by the maximum absolute vertical distance
from the points to the 45° line

(e) Select the threshold that minimizes the maximum distance as de-
scribed in Section 2.1.1, or use the distances to specify a weight as-
sociated with each threshold as described in Section 2.1.2

3. Empirically build the distribution of the peak

(a) Generate a series of desired length from the fitted model

e This may be accomplished, for example, by algorithm 9 of [Pasupathy, 2011]
e If results of many thresholds are being combined, select a thresh-
old at random from the collection according to the weights, i.e.,
threholds with high weights should be selected more often.
(b) Record the peak of the generated series

(¢) Repeat (a) and (b) 1y, times; the recorded peaks form an empirical
approximation to the distribution of the peak, or mixture of peak
distributions in the case of many thresholds.

4. Quantify uncertainty

e For a single optimal threhold

(a) Sample npeor values from a multivariate Gaussian distribution
with mean equal to the estimated parameters, 7, and covariance
matrix equal to the negative inverse Hessian matrix of the log-
likilihood evaluated at its maximum

(b) For each set of sampled parameters reapeat step 3
e For a collection of thresholds
(a) Sample the declustered data with replacement (a bootstrap sam-
ple)
b) For each potential threshold refit the model
¢) Recalculate the weights
)
)

—_

d

e

—~

Repeat step 3
Repeat (a) — (d) n_boot times

—~

The result of step 4 is np.o: empirical approximations to the distribution of the
peak, or mixture of peak distributions in the case of many thresholds.

4 Return Values

Calculation of return values follows an algorithm similar to that in Section
5.3. The only difference is step 3. Instead of empirically building the peak

distribution, the equation
/ i / | 1
At y)dtdy = — (5)
yn JO N



is solved for yy, which is interpreted as the N-year, -month, -week, etc. return
value. In the case of many thresholds, Equation 5 is sloved for each threshold
and the solutions are combined by weighted averaging according the weights
calculated in step 2.

5 Using potMax

The potMax package is demonstrated on the data in the top plot of Figure 1.
The data set is distributed as part of the potMax package and is referenced by
the name jpltap1715wind270. The present sections describe the functions to
call to carryout the steps described in Section 5.3.

5.1 Declustering

complete_series <- -jpltapl715wind270$value
declustered_obs <- decluster(complete_series = complete_series)

The argument complete_series is the time series itself. Note the negative
sign because deep valleys are more interesting for this data set than high peaks.

There exists a second optional argument to the function decluster. See the
help file for more information.

5.2 Threshold Selection and Calculation of Weights

thresholded_obs <- gumbelEstThreshold(x = declustered_obs,

1t = 100,
n_min = 10,
n_max = 100)

summary (thresholded_obs)

## Selected threshold: 2.10005

#it

## Number of thresholded observations: 45

#t

## Summary statistics:

## Min. 1st Qu. Median Mean 3rd Qu. Max .

##  2.101 2.178 2.284 2.361 2.481 3.172

pot_fit <- gumbelMLE(x = thresholded_obs, hessian_tf = TRUE)

The first argument x is the output from the function decluster. The second
argument, 1t, is the length of observation time for the series, in this case 100
seconds. The unit for time can be anything. It is the burden of the user to
be consistent and interpret results according to the supplied unit. The third
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argument, n_min, specifies the minimum number of observations to be allowed
after thresholding. This argument affects how many potential thresholds are
considered in the search for an optimal threshold. For the Gumbel model, I
recommend 10 or more, and for the full model, I recommend 15 or more. The
fourth argument, n_max, complements n_min, specifying the maximum number of
observations to allow after thresholding. This should be chosen sufficiently high
that the selected threshold does not correspond to that number of observations,
but not so high that run times become unbearable. Note that the output of
gumbelEstThreshold must be passed into gumbelMLE once more so that the
Hessian matrix may be calculated, which is not done by gumbelEstThreshold.
This is necessary for uncertainty quantification.

The W-plot for the fitted model can be creted with the function gumbelWPlot.
See the help file for gumbelWplot for a description of its arguments. The plot
for the example series is found in Figure 5.

A plot of all proposed thresholds against the corresponding fit statistic is
available too, Figure 6.

threshPlot (thresholded_obs)

If it is desired to combine the results from multiple thresholds, the function
gumbelMultiFit is called in place of both, gumbelEstThreshold and gumbelMLE.
The required arguments are the same as for gumbelEstThreshold, except the
additional weight_scale, for which a good choice is 5, as described in Section
2.1.2

multi_pot_fit <- gumbelMultiFit(x = declustered_obs, 1t = 100,
n_min = 10, n_max = 100,
weight_scale = b)

summary (multi_pot_fit)

#H# mu sigma thresh weight
## 1 2.022685 0.2182393 2.52520 0.0048787371
# 2 1.974488 0.2327130 2.48815 0.0105928637
# 3 1.975614 0.2324410 2.46845 0.0103464473
## 4 1.923555 0.2494802 2.43255 0.0265174776
# 5 1.897873 0.2578066 2.40475 0.0330347072
## 6 1.932051 0.2461094 2.39895 0.0210195406
## 7 1.956568 0.2376056 2.39200 0.0117552190
# 8 1.940139 0.2434056 2.38620 0.0176414742
# 9 1.971206 0.2325604 2.37000 0.0081044460
## 10 1.946987 0.2414678 2.34800 0.0159588816
## 11 1.955003 0.2384044 2.33870 0.0124253458
## 12 1.934167 0.2465851 2.31900 0.0238594563
## 13 1.899740 0.2600904 2.29355 0.0252442340
# 14 1.877019 0.2692300 2.27270 0.0213700903
## 15 1.834790 0.2865288 2.24370 0.0048537870
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Figure 6: Plot of fit statistics versus thresholds. The red point identifies the
minimum.
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## 61 1.865791 0.2768881 1.96455 0.0088081854
## 62 1.853960 0.2856728 1.95180 0.0029991136
## 63 1.843951 0.2931427 1.94025 0.0012601792
## 64 1.835600 0.2994799 1.92985 0.0006217707
## 65 1.826463 0.3064299 1.92290 0.0002959408
## 66 1.834070 0.3006084 1.92055 0.0005512777
## 67 1.834685 0.3001221 1.91705 0.0005819455
## 68 1.835280 0.2996595 1.91360 0.0006126170
## 69 1.835801 0.2992382 1.91015 0.0006424979
## 70 1.836184 0.2989358 1.90665 0.0006647578
## 71 1.835097 0.2998197 1.90200 0.0006021661
## 72 1.832585 0.3018899 1.89620 0.0004779378
## 73 1.828348 0.3053899 1.89270 0.0003253779
## 74 1.841393 0.2944685 1.88925 0.0011218760
## 75 1.837362 0.2979544 1.88230 0.0007455064
## 76 1.834681 0.3002894 1.87650 0.0005696512
## 77 1.832061 0.3025894 1.87420 0.0004383643
## 78 1.835878 0.2992396 1.87075 0.0006432628
## 79 1.832026 0.3026896 1.86730 0.0004325293
## 80 1.835550 0.2995371 1.86380 0.0006217061
## 81 1.831569 0.3031932 1.85685 0.0004074074
## 82 1.827832 0.3066433 1.85340 0.0002756955
## 83 1.831113 0.3036189 1.84990 0.0003882179
## 84 1.828395 0.3061861 1.84410 0.0002897807
## 85 1.825977 0.3084861 1.84180 0.0002237195
## 86 1.831412 0.3032755 1.84065 0.0004051140
## 87 1.830227 0.3044255 1.83950 0.0003546016
## 88 1.834129 0.3006255 1.83715 0.0005533402
## 89 1.833650 0.3010957 1.83365 0.0005234730

5.3 Estimation of the Distribution of the Peak

The call to gumbelMaxDist is the same for a single optimal threshold and many
thresholds.

max_dist <- gumbelMaxDist(x = pot_fit,
lt_gen = 200,
n_mc = 1000,
progress_tf = FALSE)

multi_max_dist <- gumbelMaxDist(x = multi_pot_fit,
1t_gen = 200,
n_mc = 1000,
progress_tf = FALSE)

14



The argument 1t_gen provides the length of the series for which the disti-
butio of the maximum is sought, which could be different from the lenght of the
original series, but with consistent units. The argument n_mc is the number of
samples to draw from the distribution of the maximum. A progress bar may
optionally be drawn.

For a single optimal threshold as well as many thresholds, the mean of the
distribution may be calculated with the function mean, and the entire distribu-
tion may be plotted as a histogram with an S3 method for the generic plot
function.

mean (max_dist)
## [1] 3.41819

plot(max_dist)

mean (multi_max_dist)
## [1] 3.43593

plot(multi_max_dist)

5.4 Uncertainty

max_dist_uncert <- gumbelMaxDistUncert(x = pot_fit,
lt_gen = 200,
n_mc = 1000,
n_boot = 200,
progress_tf = FALSE)

multi_max_dist_uncert <- gumbelMaxDistUncert(x = multi_pot_fit,
declust_obs = declustered_obs$declustered_series,
lt_gen = 200,
n_mc = 1000,
n_boot = 200,
progress_tf = FALSE)

The argument n_boot corresponds to the number of bootstrap replicates of
the peak distribution to calculate. Note that the 1t_gen argument in the call
to gumbelMaxDistUncert should match the 1t_gen argument provided in the
call to gumbelMaxDist. All other arguments are as previously described. For
the gumbel multi fit S3 method, the original declustered observations must
be passed in as an argument so that boostrap samples may be constructed.

15



Distribution of the Peak Value

1.51

1.01

Density

0.51

0.0
45 50

30 35 40
Peak Value

Figure 7: Histogram of the estimated distribution of the peak value consid-
ering only a single optimal threshold. The red point shows the mean of the

distribution.
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Figure 8: Histogram of the estimated distribution of the peak value combining
results from many thresholds. The red point shows the mean of the distribution.
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Figure 9: Same as Figure 7, but adding bootstrap replictes of the distribution
of the peak value to convey uncertainty in estimation. The red line shows an
80% confidence interval for the mean of the distribution of the peak.

The results maybe added to the histogram depicting the distribution of
the peak (Figure 10),or they may be displayed alone (Figure 10). The same
plot commands work for the S3 classes gumbel max_dist multi_thresh and
gumbel max_dist_uncert multi_thresh.

# Figure 9
plot(max_dist_uncert, add = TRUE)
# Figure 10
plot(max_dist_uncert, add = FALSE)

5.5 Return Values

The calls to gumbelMaxDist and gumbelMaxDistUncert are replaced by gumbelNYear
and gumbelNYearUncert. Plot and summary functions are not always imple-

18
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Figure 10: Bootstrap replicates of the distribution of the peak starting with the

series shown in the top plot of Figure 1. The red line shows an 80% confidence
interval for the mean of the distribution of the peak value.
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mented for return values.

return_200s <- gumbelNYear(x = pot_fit, N = 200)
return_200s$N_year_val

## [1] 3.274853

return_200s_uncert <- gumbelNYearUncert(x = pot_fit, N = 200,
n_boot = 200)
quantile(return_200s_uncert$boot_samps, probs = c(0.1, 0.9))

#i 10% 90%
## 3.061506 3.515152

multi_return_200s <- gumbelNYear(x = multi_pot_fit, N = 200)
multi_return_200s$N_year_val

## [1] 3.282876

multi_return_200s_uncert <- gumbelNYearUncert(x = multi_pot_fit,
declust_obs = declustered_obs$declustered_series,
N = 200,
n_boot = 200)
summary (multi_return_200s_uncert)

## $standard_error
## [1] 0.1545509

##
## $conf_int
#i# 10% 90%

## 3.076580 3.460663

6 Full Estimation

The steps shown in Section 5 leveraged the intensity function in Equation 2.
To use the intensity function in Equation 1 instead, replace the function calls
gumbelx with full*. For example, to choose an optimal threshold, use the func-
tion fullEstThreshold. Note that the functions fullEstThreshold, fullMLE,
and fullMultiFit have an additional required argument, n_starts, which spec-
ifies the number of times to perform the optimization from random starting lo-
cations. The method for fullMaxDistUncert for the S3 class full multi fit
also requires this argument. A reasonable value is 20. Note that functions as-
sociated with return values are only implemented for the the Gumbel model, i.e.

the intensity function in FEquation 2.
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